Iterable to Superset

This page provides you with instructions on how to extract data from Iterable and analyze it in Superset. (If the mechanics of extracting data from Iterable seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Iterable?

Iterable hosts a growth marketing platform that provides omnichannel customer engagement through email, SMS, web push, and other channels. Marketers can use a drag-and-drop interface to set up campaign workflows.

What is Superset?

Apache Superset is a cloud-native data exploration and visualization platform that businesses can use to create business intelligence reports and dashboards. It includes a state-of-the-art SQL IDE, and it's open source software, free of cost. The platform was originally developed at Airbnb and donated to the Apache Software Foundation.

Getting data out of Iterable

Iterable exposes data through webhooks, which you can create at Integrations > Webhooks. You must specify the URL the webhook should use to POST data, and choose an authorization type. Edit the webhook, tick the Enabled box, select the events you'd like to send data to the webhook for, and save your changes.

Sample Iterable data

Iterable returns data in JSON format. Here’s an example of the data returned for an email unsubscribe event:
{
   "email": "sheldon@iterable.com",
   "eventName": "emailUnSubscribe",
   "dataFields": {
      "unsubSource": "EmailLink",
      "email": "sheldon@iterable.com",
      "createdAt": "2017-12-02 22:13:05 +00:00",
      "campaignId": 59667,
      "templateId": 93849,
      "messageId": "d3c44d47b4994306b4db8d16a94db025",
      "emailSubject": "Welcome to JM Photography at {{now}}",
      "campaignName": "Test the NOW handlebars",
      "workflowId": null,
      "workflowName": null,
      "templateName": "Sample photography welcome",
      "channelId": 3420,
      "messageTypeId": 3866,
      "experimentId": null,
      "emailId": "c59667:t93849:sheldon@iterable.com"
   }
}

Preparing Iterable data

If you don't already have a data structure in which to store the data you retrieve, you'll have to create a schema for your data tables. Then, for each value in the response, you'll need to identify a predefined datatype (INTEGER, DATETIME, etc.) and build a table that can receive them. Iterable's documentation should tell you what fields are provided by each endpoint, along with their corresponding datatypes.

Complicating things is the fact that the records retrieved from the source may not always be "flat" – some of the objects may actually be lists. This means you'll likely have to create additional tables to capture the unpredictable cardinality in each record.

Loading data into Superset

You must replicate data from your SaaS applications to a data warehouse before you can report on it using Superset. Superset can connect to almost 30 databases and data warehouses. Once you choose a data source you want to connect to, you must specify a host name and port, database name, and username and password to get access to the data. You then specify the database schema or tables you want to work with.

Keeping Iterable data up to date

Once you've set up the webhooks you want and have begun collecting data, you can relax – as long as everything continues to work correctly. You'll have to keep an eye out for any changes to Iterable's webhooks implementation.

From Iterable to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Iterable data in Superset is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Iterable to Redshift, Iterable to BigQuery, Iterable to Azure Synapse Analytics, Iterable to PostgreSQL, Iterable to Panoply, and Iterable to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to move data automatically, making it easy to integrate Iterable with Superset. With just a few clicks, Stitch starts extracting your Iterable data, structuring it in a way that's optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Superset.